Search results for "Non-positive curvature"

showing 2 items of 2 documents

Homogeneous Weyl connections of non-positive curvature

2015

We study homogenous Weyl connections with non-positive sectional curvatures. The Cartesian product $\mathbb S^1 \times M$ carries canonical families of Weyl connections with such a property, for any Riemmanian manifold $M$. We prove that if a homogenous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (streched non-positive), then it must be locally of the product type.

Mathematics - Differential GeometryPure mathematics01 natural sciencesGaussian thermostatssymbols.namesake0103 physical sciencesFOS: MathematicsNon-positive curvatureNon-positive curvature0101 mathematicsConnection (algebraic framework)53C24 53C21Mathematics010102 general mathematicsMathematical analysisLie groupWeyl connectionsCartesian productManifoldUnimodular matrixDifferential Geometry (math.DG)Differential geometrysymbolsWeyl transformationMathematics::Differential Geometry010307 mathematical physicsGeometry and TopologyAnalysisAnnals of Global Analysis and Geometry
researchProduct

A sharp stability estimate for tensor tomography in non-positive curvature

2021

Funder: University of Cambridge

osittaisdifferentiaaliyhtälötMathematics - Differential GeometryGeodesicGeneral Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Curvature01 natural sciencesinversio-ongelmatTensor field010101 applied mathematicsmath.DGMathematics - Analysis of PDEsDifferential Geometry (math.DG)Simply connected spaceFOS: MathematicsNon-positive curvatureTensor0101 mathematicsConvex functionComputingMilieux_MISCELLANEOUSmath.APMathematicsAnalysis of PDEs (math.AP)
researchProduct